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Signature of non-Newtonian orbits in ray-splitting cavities
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Ray splitting is a universal phenomenon that occurs in all wave systems with sharp interfaces. A key
consequence of ray splitting is the occurrence of non-Newtonian periodic orbits whose presence can be
revealed in the oscillating part of the density of states. We use thin dielectric- and metal-loaded microwave
cavities to identify experimentally the signature of non-Newtonian periodic orbits caused by ray splitting at
sharp interfaces and corroborate all our experimental results with detailed numerical computations and semi-
classical theory. For two-dimensional ray-splitting problems the electromagnetic Helmholtz and quantal Schro¨-
dinger equations are equivalent. Thus our results are directly relevant to quantum chaos studies.
@S1063-651X~97!11612-9#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The behavior of waves at the interface between two me
is of fundamental importance in many fields of physics. T
most widely studied phenomena in this context are reflect
refraction, and diffraction. In the limit of small wavelength
the geometric optics limit, it is possible to assign rays
wave fronts. Reflection and transmission at sharply defi
interfaces then give rise to the phenomenon of ray splitti
Ray splitting is universal. It occurs, e.g., in optics when
light ray encounters the interface between two differ
transparent media of different index of refraction; it occurs
hydrodynamics when a surface wave passes between
regions of different depths; it occurs in geophysics wh
waves generated by an earthquake experience ray splittin
fault lines. While these manifestations of ray splitting a
well known and studied in detail since the times of Snell a
Descartes, the wave implications of ray splitting were o
recently investigated. Couchmanet al. @1# studied ray split-
ting in the context of acoustics and quantum chaos. Pra
et al. @2# computed analytically the ray-splitting~RS! correc-
tion to the Weyl formula@3# and suggested specific expe
ments for the purpose of studying RS phenomena. Blu¨mel
et al. @4,5# investigated RS phenomena theoretically in a c
otic, circular, step billiard. They identified the signatures
non-Newtonian RS orbits in the Fourier transform of t
scaled level density, thereby demonstrating numerically
importance of periodic non-Newtonian RS orbits. Sirkoet al.
@6# verified experimentally the predicted manifestations
ray splitting of electromagnetic waves. Non-Newtonian
bits also appear in the context of diffraction@7#, a topic
closely related to RS phenomena.

Central points of this paper are to check the theoret
predictions@1,2,4,5# and to elaborate on the experimen
results@6# on the wave implications of ray splitting. To thi
end we use thin microwave cavities partially loaded w
dielectric or metal in order to generate ray splitting of ele
tromagnetic waves at sharp interfaces. Thus our paper
tinues the use of microwave resonance spectroscopy to v
wave effects predicted on the basis of semiclassical quan
571063-651X/98/57~1!/304~12!/$15.00
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physics. This was pioneered by Sto¨ckmann and Stein@8#,
who began the use of microwave cavity resonators for inv
tigating the validity of the conjecture of a universal conne
tion between classical chaos and quantal energy level st
tics in two-dimensional billiards. Using microwave cavitie
for which analytical solutions are not possible, the paper
Sridhar and Kudrolli@9# presented an experimental demo
stration of the consequences of the theorem of isospe
domains. Information came both from the eigenfrequen
spectrum, as in@8#, and from experimental maps of th
eigenfunctions obtained with a frequency pertubat
method@10# used for these purposes in@11#. The predicted
influence of time-reversal symmetry breaking on ener
level statistics was checked by Soet al. @12# and Stoffregen
et al. @13#. The paper by Sirkoet al. @6# presented an experi
mental demonstration of the predicted existence of n
Newtonian orbits by analyzing resonance spectra of a mic
wave cavity partially filled with a dielectric, Teflon. Th
purpose of the present paper is to amplify the results
tained in@6# and to present the results of measurements
theory on the wave implications of ray splitting in meta
loaded microwave cavities. Because the electromagn
Helmholtz and quantal Schro¨dinger equations are equivalen
in two dimensions, our results are directly relevant to qu
tum chaos studies@2,3#.

The paper is organized in the following way. Section
presents some theoretical background relevant for RS
tems, including the precise nature of the predictions of qu
tum theory on the importance of non-Newtonian orbits
RS systems. These predictions are illustrated with the hel
simple, one-dimensional RS models. Section III presents
experiments and theory on the spectra of empty cavit
These results establish the reliability of our experimental a
theoretical methods. Section IV presents our experime
evidence for the existence of non-Newtonian orbits in
context of thin microwave cavities partially filled with Te
flon. Section V investigates thin cavities partially filled wit
metal. This system also shows the signatures of n
Newtonian orbits. Section VI analyzes our theoretical a
experimental results in the light of semiclassical theory. S
304 © 1998 The American Physical Society
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57 305SIGNATURE OF NON-NEWTONIAN ORBITS IN RAY- . . .
tion VII discusses our results. Section VIII summarizes o
findings and concludes the paper.

II. THEORETICAL CONTEXT

To appreciate the issues involved when dealing with
semiclassics of RS systems, we shall use some o
dimensional systems to illustrate all the pertinent ideas
nomenclature needed to discuss two-dimensional RS sys
in Secs. III–VII. Consider the one-dimensional square-w
potential sketched in Fig. 1. The normalized eigensta
of a particle of mass m in the well are cn(x)
5A2/b sin(npx/b), n51,2, . . . .Using these states we con
struct the energy-dependent Green’s function for propaga
at energyE from x to x8 ~see Fig. 1!

G~x,x8;E!5 (
n51

`
cn~x!cn~x8!

E2En1 i e
. ~2.1!

With the help of Poisson’s formula Eq.~2.1! can be cast into

G~x,x8;E!5
m

i\2k (
n52`

`

$exp~ i ux2x812nbuk!

2exp~ i ux1x812nbuk!%, ~2.2!

wherek5A2mE/\2. The result~2.2! can be interpreted in
terms of multiple paths. The first term in Eq.~2.2! for n50
represents the direct path fromx to x8, denoted byD in Fig.
1. The term in the exponent is the classical action of this p
in units of \. The second term in Eq.~2.2! for n50 repre-
sents an indirect path fromx to x8, which proceeds via one
reflection from the left-hand wall of the square well. It
denoted byA in Fig. 1. Another possibility of reachingx8
starting fromx is to ‘‘overshoot,’’ i.e., reflect at the right
hand wall of the square well and return tox8. This path,
denoted byB in Fig. 1, is represented by the second term
Eq. ~2.2! for n521. The minus sign in front of the secon
term in Eq. ~2.2! follows from both A and B involving a
single reflection at one of the walls of the square well.

FIG. 1. Quantum propagation in the one-dimensional squ
well potential. Starting fromx, the point x8 in the well can be
reached in a variety of different ways. The shortest paths
sketched and denoted byD ~direct path!, A ~shortest path connect
ing x with x8 via a single bounce off the left-hand wall of the well!,
andB ~shortest path connectingx with x8 via a single bounce off
the right-hand wall of the well!. All connecting paths in the squar
well are Newtonian.
r

e
e-
d
ms
ll
s

n

th

f

coursex8 is reachable fromx by any number of overshoot
followed by bounces off the walls of the square well. Th
explains the infinite sum in Eq.~2.2!. The level densityr(E)
of the square well is easily computed using the trace form
r52Im Tr G/p. We obtain

r~E!5
mb

\2kpF112(
n51

`

cos~2nbk!G . ~2.3!

The level density~2.3! can be written in the form of a
Gutzwiller formula@3#

r~E!5 r̄ ~E!1 r̃ ~E!, ~2.4!

where r̄ (E)5dn/dE5mb/\2kp is the average part of the
level density and

r̃ ~E!5
1

\p (
n51

`

T~E!cos@nS~E!/\# ~2.5!

is the oscillating part. For the square well there is only o
primitive periodic orbit at energyE. Its action,S(E) in Eq.
~2.5!, is given byrp dx5\(2bk). The round-trip timeT(E)
on this orbit is given byT(E)5]S(E)/]E52bm/\k. Insert-
ing these results into Eq.~2.5! reproduces Eq.~2.3!.

The form of the level density~2.3! suggests a straightfor
ward method for extracting from it the actions of primitiv
periodic orbits and their repetitions: Fourier transformati
according to

F~ l !5E H r~E!

r̃ ~E!
J exp~2 ikl !dE. ~2.6!

Using r(E) in Eq. ~2.6! produces a sharp peak atl 50 that
corresponds to the zero-length periodic orbit responsible
r̄ (E). Using r̃ (E) in Eq. ~2.6! we obtain peaks only at the
actions of nontrivial periodic orbits. In the case of the squ
well the Fourier transform~2.6! is strongly peaked at mul
tiples of the ‘‘reduced action’’l 05S(E)/\k52b, the length
of the primitive periodic orbit.

Let us now introduce a potential step into the square w
of Fig. 1. We obtain the one-dimensional step billiard sho
in Fig. 2. The energy levels are obtained from the solutio
En of the transcendental equation

e-

re

FIG. 2. Newtonian (N) and non-Newtonian (NN) periodic or-
bits in a one-dimensional square well potential with a potential s
of finite heightV0.
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A12h tan~ka!1tan@kA12h~b2a!#50, ~2.7!

where

h5V0 /E. ~2.8!

The level density is given by

r~E!5 (
n51

`

d~E2En!. ~2.9!

With the potential step present Fourier transformation or̃
will no longer yield sharp peaks at the actions of the prim
tive periodic orbits since the classical actionS(E)5rp dx
no longer scales ink. This, however, can be trivially
‘‘cured’’ by calculating ‘‘scaled’’ energy levels@4#. This is
done by computing the roots of Eq.~2.7! keepingh constant.
This condition is automatically fulfilled for microwave cav
ties partially filled with dielectric@2#.

For the step potential shown in Fig. 2 we computed 2
scaled energy levels usinga51, b5p/2, andh51/2. We
Fourier transformed the level density~2.9! according to Eq.
~2.6!. The absolute square of the resulting transformuF( l )u2
is shown in Fig. 3. Sinceh,1, meaningE.V0, the only
primitive Newtonian periodic orbit is the one bouncing b
tween the left- and right-hand walls of the well. It is denot
by A in Fig. 2. Its action is given by

S5\kl0 , ~2.10!

where

l 052@a1A12h~b2a!#. ~2.11!

Simple Bohr-Sommerfeld quantization of this orbit yiel
approximate solutions of Eq.~2.7! given by

kn52pn/ l 0 . ~2.12!

Using the wave numbers~2.12! to compute the level densit
~2.9!, the Fourier transform~2.6! can be performed analyti
cally, giving

FIG. 3. Absolute square of the Fourier transform of the sca
level density of the step potential sketched in Fig. 2 fora51,
b5p/2, andh51/2. The peaks can be associated with linear co
binations of multiples of the actionsl B and l C according to
l i j 5 i l B1 j l C , i , j 50,1, . . . ,whereB andC refer to the two primi-
tive non-Newtonian orbitsB andC of Fig. 2. The assignments (i , j )
of the peaks are indicated in the figure.
-

0

F~ l !; (
m50

`

d~ l 2ml0!. ~2.13!

Thus we expect sharp peaks in the Fourier transform at m
tiples of l 0'2.8 for our choice of parameters. Figure 3, ho
ever, shows thatF( l ) contains many more peaks in additio
to those expected according to Eq.~2.13!. They occur at the
locations

l i j 5 i l B1 j l C , i , j 50,1,2, . . . , ~2.14!

wherel B52A12h(b2a) is the reduced action of the orb
B in Fig. 2 andl C52a is the reduced action of the orbitC in
Fig. 2. SinceE.V0, neither one of the orbitsB or C is
Newtonian: They are manifestly non-Newtonian. While t
orbit B is never Newtonian at any energy, note that the or
C evolves into the Newtonian orbitD for E,V0. This
simple one-dimensional example also shows that not all c
ceivable non-Newtonian orbits~a multiply overcountable se
of orbits in the sense of Feynman’s path integrals! are
equally important. Important are only those non-Newton
orbits, or rays, that originate by the process ofray splittingat
sharp potential steps.

This discussion for the one-dimensional step poten
shows that non-Newtonian orbits are important for the flu
tuation properties of the level density of RS systems. To
extent that they cannot be neglected in a proper semiclas
treatment of RS systems, quantum mechanics must certa
‘‘know’’ about the non-Newtonian orbits. This observatio
motivated the authors of Ref.@1# to extend Gutzwiller’s trace
formula @3# ~which includes only summation over period
Newtonianorbits! to a formula that also includes summatio
over all periodicnon-NewtonianRS orbits. Their modified
Gutzwiller formula is@1,4#

r̃ ~E!5Im (
n

An
1/2Tn

2i\sinh~ln/2!
expF i S Sn~E!

\
1fnD G .

~2.15!

In this formula r̃ is the oscillating part of the level density
the sum extends over all periodic orbits of the system~New-
tonian and non-Newtonian! including repetitions,Tn are the
traversal times of the primitive periodic orbits,ln are the
associated stability indices,Sn(E) are the classical actions a
energyE, fn are phases, and

An5F)
i 51

%n

ur i u2GF)
j 51

tn

~12ur j u2!G ~2.16!

are orbit weights, where%n counts the number of reflections
tn counts the number of transmissions of orbit numbern,
andur i u2 is the reflection probability at encounter numberi at
a RS interface.

Inasmuch as Eq.~2.15! is a good approximation to the
level densityr̃ of a given RS system, the structure of E
~2.15! again suggests using the Fourier transform~2.6! to
extract periodic orbit information fromr̃ . Thus a Fourier
transformation of the experimental level density directly
veals the content of Newtonian and non-Newtonian perio
orbits. This was the guiding principle we used in Ref.@6# to
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demonstrate experimentally the signature of non-Newton
orbits in a thin microwave cavity loaded with a bar of Teflo

An alternative semiclassical approach is Bogomoln
method of quantum surfaces of section. It works very w
for families of periodic orbits, and just like Gutzwiller’s for
mula it can be modified to include non-Newtonian orbi
According to Bogomolny’s approach, the oscillating part
the level density is given by@4#

r̃ ~E!5
1

p
Im(

s51

`
1

s

d

dE
Tr T̂~E!s, ~2.17!

where T̂(E) is Bogomolny’s transfer operator that is bas
on semiclassical transition amplitudes@14#. In position rep-
resentation it is given by

T~q,q8;E!5
A~q,q8;E!

A2p i\
U]2S~q,q8;E!

]q]q8
U1/2

3expF i

\
S~q,q8;E!1phasesG , ~2.18!

whereA is an amplitude that keeps track of successive
flections and transmissions encountered by an orbit that t
els from starting pointq to end pointq8 on the quantum
surface of section. We shall use Bogomolny’s approach
Sec. VI for the computation of the contribution of no
Newtonian orbits to the level density.

A last question remains. When is ray-splitting importan
As an aid to answering this question we consider reflec
and transmission in an analytically solvable step poten
with variable width@15#. A particleP of massm and energy
E.U0 incident from the left scatters off the potenti
U(x)5U0 /@11exp(2x/w)# sketched in Fig. 4.U0 is the
strength of the potential andw is its width. Asymptotically
the wave function is given byc(x)5exp(ikx)1rexp(2ikx)
for x→2` and c(x)5texp(ikx) for x→`, where
k5@2mE#1/2/\, k5@2m(E2U0)#1/2/\, and t is the trans-
mission amplitude. The reflection coefficientr , computed ex-
plicitly in Ref. @15#, is

r 5
sinh@pw~k2k!#

sinh@pw~k1k!#
. ~2.19!

We are interested in the semiclassical limit that involves
scattering of waves for\→0 in the limit of a sharp potentia
step, i.e.,w→0. The resulting double limit\→0,w→0 is

FIG. 4. Sketch of an analytically solvable step potential of wid
w and potential heightU0 @15#. It serves to illustrate the differenc
between the Newtonian and the non-Newtonian~RS! semiclassical
limits.
n
.
s
ll
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f
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v-

in

n
l

e

undefined without further specification. There are two ca
of interest.~i! For fixed w we let \→0 and only then let
w→0. This is the ‘‘Newtonian limit.’’ In this limit the ray
dynamics ofP is ordinary Newtonian mechanics; forE.U0
(E,U0), P is transmitted~reflected! with unit probability to
the right~left!. ~ii ! For fixed\ we letw→0 and only then let
\→0. This is the RS limit. In this case the ray dynamics
P is a non-Newtonian, nondeterministic mechanics that
volves ray splitting at the potential step@1#. The RS limit of
Eq. ~2.19! is

r 5~k2k!/~k1k!, ~2.20!

which, it should be noted, is independent of\. Conse-
quently, even forE.U0 and\→0, P is not transmitted with
unit probability; it is reflected with finite probability to the
left. While for a Newtonian orbit reflection and transmissio
are decided on the basis of energy and momentum cons
ations only, reflection and transmission in the RS limit a
stochastic processes. By ‘‘stochastic’’ we mean the follo
ing. A ray impinging on the RS boundary has to ‘‘decide
whether it is transmitted through the RS boundary or
specularly reflected. Reflection and transmission are g
erned by the reflection probabilitiesur i u2. Thus the proper ray
dynamics in the RS limit is not deterministic; it is trulynon-
deterministic. This is the reason why we chose the wo
stochasticfor characterizing the ray dynamics in the R
limit. The consequences of the stochasticity of the ray
namics were already explored in several theoretical publ
tions @1,4,16#.

Returning to the extended Gutzwiller formula~2.15!, we
see that non-Newtonian orbits contribute with apprecia
weight only if the reflection coefficientsr are large. The
weights ~2.16! of short non-Newtonian RS orbits in Eq
~2.15! are essentially proportional to the product of theur i u2.
Therefore, for a particular non-Newtonian orbit to be impo
tant, the product of the reflection probabilities should not
too small. This translates physically into the requirement t
the width of the RS interface has to be very small compa
to the local wavelength. AtE52U0, e.g., the reflection prob
ability ur u2 computed from Eq.~2.19! reaches the 1% leve
only if the width of the potentialw is smaller than about 1/20
of a wavelength. This answers our question. Ray splitting
important whenever the potential varies on a scale tha
much smaller than a wavelength. This requirement is ea
fulfilled in the microwave context where typical wavelengt
are in the centimeter regime and the widths of dielectric
terfaces can be machined to micrometer precision.

In the following we are mainly concerned with two
dimensional RS billiards. A RS billiard is characterized
the existence of a RS boundary in its interior as shown
Fig. 5. The ~sharp! RS boundary of lengthR divides the
billiard into two isolated areasA andA8 wherein the poten-
tial is V50 andV5V0, respectively. The outer perimeters
the two separate domains are denoted byL andL8, respec-
tively, as shown in Fig. 5. The basic characteristic of R
billiards is the mean level density, computed from the me
staircase function@3# N̄(E) according to

r̄ ~E!5dN̄~E!/dE. ~2.21!
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For Dirichlet boundary conditions the mean staircase
given by ~\51, m51

2!

N̄~E,V0!5
1

4p
@AE1A8~E2V0!u~E2V0!#

2
1

4p
@LAE1L8AE2V0u~E2V0!#

1RAV0 n̄ RS~E/V0!1DN̄~E,V0!, ~2.22!

whereu is Heaviside’s step function andn̄ RS is the RS cor-
rection derived in@2#. The RS correction in Eq.~2.22! was
checked in@2# for an integrable RS billiard with mixed
boundary conditions and was found to be accurate. It w
checked in@17# for a chaotic, triangular RS billiard and wa
again found to be accurate. Additional corrections to
mean level densityr̄ (E) that arise from topological charac
teristics of the billiard, such as corners and holes, are s
sumed into the termDN̄(E,V0) in Eq. ~2.22!.

III. EMPTY CAVITIES

This section sets the stage for our experiments
dielectric- and metal-loaded cavities reported in Secs. IV
V, respectively. The main purpose is to present our exp
mental technique and to make contact with existing the
and experiments on empty cavities. Thus our results
empty cavities are the point of departure and will serve as
reference gauge for our experiments and theory with loa
cavities.

It is well known @18# that in the case of thin cavities th
Maxwell equations for the vector electromagnetic waves
duce to the two-dimensional situation of a Helmholtz eq
tion for a scalar wave problem, i.e., a Schro¨dinger equation.
~An empty cavity is ‘‘thin’’ for frequenciesn less than the
cutoff frequencync5c/2H, wherec is the speed of light and
H is the cavity height.! Hence microwave cavities are exce
lent models for quantum chaos@8,12,13,19#. Figure 6~a!
shows the shape and the dimensions of our cavity, a B
movich stadium@3#. A denotes its area andL its perimeter.
We used a transmission method@20# to measure the resonan
frequencies of the empty cavity. We were careful to comp
spectra obtained with different placements and inser

FIG. 5. Typical ray-splitting billiard. The ray-splitting boundar
divides the billiard into two separate regions of areaA, perimeterL,
V50 and areaA8, perimeterL8, V5V0, respectively.
s

s

e

b-

n
d
i-
y
n
e
d

-
-

i-

e
n

depths of the coupling antennas to ensure that we misse
levels up to a certain frequency, obtaining 50 such reson
frequenciesn j , j 51, . . .,50. The corresponding wave num
bers arekj52pn j /c. We define the ‘‘energies’’Ej5kj

2 . In

order to extract the oscillating part of the level densityr̃
from the measured data, we need the mean staircase fun
N̄(E), i.e., the number of resonances up to the energyE.
According to Eq.~2.22! the first two terms in a systemati
expansion of N̄(E) in powers of E are given by
N̄(E)5aE2bAE, wherea5A/4p andb5L/4p. With the
measured dimensions of the cavity given in Fig. 6~a! and
with a conservative estimate of their uncertainties, we obt
a522.0(5) cm2 and b54.87~8! cm. A least-squares fit o
the measured staircase of cavity resonances yieldsa522.2
cm2 and b54.89 cm; both agree with theoretical expect
tions based on measured dimensions.

For an empty billiard the classical actions in Eq.~2.15!
are given bySn(E)5rgn

pW •dxW5\kln , wherel n is the geo-

metric length of the periodic orbitgn . Since the actions scal
asAE and the round-trip timesTn(E) scale as 1/AE, a Fou-
rier transform of r̃ (E) shows peaks at the lengthsl n of
periodic orbits. We determined the density of sta
for the empty Bunimovich stadium according
r(E)5( j 51

50 d(E2Ej ), subtracted the mean densityr̄ (E)

5dN̄(E)/dE to obtain r̃ (E), and computed

FIG. 6. Sketch of the Bunimovich stadium microwave cavi
Dimensions are given in cm.~a! The empty cavity.~b! The
dielectric-loaded cavity. In order to study the shift in position
periodic non-Newtonian RS orbits, the positiond of the Teflon
dielectric bar, which entirely fills the 0.8 cm height of the cavit
can be shifted along the straight section of the cavity. The posi
shown (d59.55 cm! corresponds to one of the positions we used
our experiments.
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F~ l !5E
0

Emax
r̃ ~E!v~E!exp~2 ikl !dE, ~3.1!

whereEmax5E50 andv(E)5sin(E/Emax) is a window func-
tion that suppresses the Gibbs overshoot phenomenon@21#.
Figure 7 shows the absolute square ofF( l ). As expected, we
see pronounced peaks near the lengths of certain per
orbits. As shown in Fig. 7, the large peak atl .52 cm covers
several unresolved periodic orbits. As is discussed in S
VII, we estimate that thousands of levels would be neede
resolve them in this cluster. It is important to note that for t
empty cavity no significant peak inuF( l )u2 occurs below
l 520 cm.

IV. DIELECTRIC-LOADED CAVITY

This section demonstrates the existence of non-Newto
orbits in the presence of ray splitting. To achieve this g
we went beyond the conventional empty billiard experime
~see Secs. I and III! by introducing a bar of Teflon dielectri
into the Bunimovich cavity described in Sec. III. Expe
ments of this type were previously suggested in Ref.@2#.
Figure 6~b! shows the shape, placement, and dimension
the dielectric bar. In our experiments it was possible to sl
the bar parallel to the major axis of the stadium using
distanced from one tip of the cavity to describe its positio
Figure 6~b! shows the bar for one of the placements we u
in our experiments. The dielectric constant of Teflon
known experimentally@22# to bee52.08, with essentially no
frequency dependence over the range of interest in this p
@23#.

We studied two cases corresponding to two differ
placements of the dielectric bar:~D1) d59.55 cm and (D2)
d57.17 cm. For each case we measured the first 50 r
nance frequencies and performed the windowed Fou
transform as described in Sec. III@see Eq.~3.1!#. For the
correct interpretation of our Teflon experiments it is impo
tant to realize that the Teflon bar exerts aglobal effect on the
frequency spectrum: It shifts the positions ofall resonances

FIG. 7. Absolute square of the Fourier transform of the fluc
ating part of the density of resonances of the empty cavity show
Fig. 6~a!. The assignment of peaks ofuF( l )u2 to simple, periodic
orbits is shown along with the lengthl of each such orbit in centi-
meters.
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in the frequency domain. For the discussion below, o
should not try to focus on what adding the Teflon bar mig
do to any individual resonance in the frequency doma
rather, one should focus on what it does to the spectrum
whole and, in particular, to its Fourier transform. While d
spite the presence of the bar the appearance of the Fo
transform for l .20 cm is essentially unchanged, strikin
features appear forl ,20 cm. On an expanded scale, Fig.
showsuF( l )u2 for the empty cavity~dotted line! and the two
dielectric casesD1 ~full line! and D2 ~dashed line!. While
even on the expanded scale the transform for the empty
dium shows no significant structure belowl 520 cm, the case
D1 shows two peaks, one atl .5.5 cm and another atl .19
cm. The peak atl .5.5 cm can be explained as the signatu
of a family of periodic non-Newtonian orbits bouncing in
side the dielectric bar parallel to the major axis of the s
dium. Inside the dielectric the action of a periodic orbit
multiplied by the index of refraction. In other words, th
length of a periodic orbit is not the geometric length but t
optical path length. With the dimensions given in Fig. 6 w
predict that the optical path length of this orbit bounci
inside the Teflon bar isl opt523Ae31.9 cm55.5 cm. This
is in excellent agreement with the location of the first peak
D1. The second peak ofD1 can be interpreted as a non
Newtonian RS orbit bouncing between the round tip of t
cavity and the nearest edge of the Teflon bar@24#. Since this
orbit travels entirely outside the dielectric, its optical pa
length should equal its geometric length,l 5239.55 cm
519.1 cm. This agrees well with the experimental data. N
that shifting the location of the Teflon bar should not infl
ence the location of the non-Newtonian ‘‘internal bounc
orbit at l .5.5 cm. Indeed, the first peak in the Fourier tran

-
in

FIG. 8. Absolute square of the Fourier transform of the fluc
ating part of the density of resonances shown on an expanded
tical and horizontal scale over the interval 0< l<23 cm. Dotted
line, empty cavity; solid line, Teflon dielectric inserted~caseD1,
d59.55 cm!; dashed line, Teflon dielectric inserted~case D2,
d57.17 cm!. The assignment of peaks in the transform to simp
periodic non-Newtonian RS orbits is shown along with the opti
path lengthl for each such orbit given in centimeters.
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form of D2 occurs at the same position as the peak in theD1
data. We expect that the non-Newtonian orbit bouncing o
side the dielectric, however, should shift to the new posit
l 5237.17 cm514.34 cm. Experimentally, the second pe
in D2 does occur near this expected position.

The reason for the non-Newtonian nature of the inter
and external bounce orbits identified in our experiments
the following. As shown in Ref.@2#, the Helmholtz equation
for the two-dimensional cavity~partially! filled with dielec-
tric can be interpreted as a Schro¨dinger equation with an
attractive potential over the extension of the dielectric. Sin
an internal bounce orbit is one that bounces at normal i
dence and atpositiveenergyinsidean everywhere negativ
~attractive! potential, it cannot correspond to a Newtoni
orbit. The same reasoning applies to orbits bouncing off
dielectric interface at normal incidence from the outside.
the Newtonian case a trajectory normally incident on an
tractive potential is transmitted with probability one. Ther
fore, the peaks observed nearl 519 and 14 cm cannot origi
nate from Newtonian periodic orbits.

This result concludes our demonstration of the signat
of non-Newtonian orbits in the resonance spectrum of a p
ticular ray-splitting system, the dielectric-loaded cavity
the shape of a Bunimovich stadium. To strengthen our cl
of the universality of the presence of non-Newtonian orb
in any RS system, we now turn to an investigation of ra
splitting phenomena in thin, metal-loaded microwave ca
ties.

V. METAL-LOADED CAVITIES

We studied experimentally a thin rectangular cavity
dimensionsH51.2 cm ~height!, a523 cm ~length!, and
b520 cm~width!, with a metallic bar insert~see Fig. 9!. The
metallic bar is of widthb520 cm and has a rectangular cro
sectionh3s, where h50.42 cm ~height! and s52.38 cm
~length!. In analogy to the dielectric case, we denote
distance of the bar from the nearest end wall of the cavity
d. We also find it convenient to define the coordinate syst
for the cavity shown in Fig. 9, associating the direction of t
width of the cavity withz, the direction of the length of the
cavity with y, and the direction of the height of the cavi

FIG. 9. Sketch of the rectangular cavity loaded with the meta
bar. In analogy to the dielectric-loaded Bunimovich stadium@see
Fig. 6~b!# the metal bar can be shifted in they direction. The posi-
tion shown corresponds to one of the placements used in our
periments (M2, d58.5 cm!. The dimensions of the cavity area523
cm, b520 cm, ands52.38 cm.
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with x ~not shown in Fig. 9!. In our experiments we investi
gated the spectrum of the cavity for two different positio
of the metallic bar:M1, d55 cm andM2, d58.5 cm. For
each position of the bar we measured the first 54 resona
frequencies and calculated the~windowed! Fourier trans-
forms of the corresponding level densities@Fig. 10~a!#. Fig-
ure 11~a! shows the structure of the peaks associated w
non-Newtonian RS orbits on an expanded scale in the ra
l<30 cm.

Ray-splitting occurs near the sharp front and back ed
of the metallic bar insert. For metallic steps no refracti
occurs and the optical path length is equal to the geome
path length@2#. For the two bar positions we predict th
following primitive, non-Newtonian, periodic orbits with
geometric lengthsl ,30 cm that involve no more than tw
reflections at the edges of the metallic bar.M1: l 54.76,
10, 14.76, 24.76 cm;M2: l 54.76, 17, 21.76, 24.24, 29 cm
The three peaks in each of the panels of Fig. 11~one in the
dotted line, two in the solid line! account for at least three o
the listed periodic orbits. As was the case for the Bunimo
ich stadium, see Secs. III and IV, a much larger number
eigenfrequencies would be needed to resolve all structure
the two Fourier transforms. Many of the other expected
peaks~in particular the ones expected atl 52s54.76 cm! are
either too small to be seen on the scale of Fig. 11, or they
hidden in larger peaks or in steeply rising wings.

c

x-

FIG. 10. Fourier transform of the level density of the 20323
cm2 rectangular cavity in the range 0< l<140 cm. Solid line, metal
bar in positionM1 (d55 cm!; dotted line, metal bar in positionM2

(d58.5 cm!. ~a! Experimental results.~b! Theoretical results.
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57 311SIGNATURE OF NON-NEWTONIAN ORBITS IN RAY- . . .
A rectangular cavity loaded with a metallic bar is partic
larly well suited for numerical calculations of its eigenmod
and eigenfrequencies. Figure 9 shows three important p
erties of our cavity:~i! The cross section of the cavity o
thogonal to thez direction does not depend on the positio
~ii ! the height of the cavity is much smaller than its other t
dimensions, and~iii ! the cavity interior consists of three re
gions of simple rectangular shape. Each of these prope
plays an important role in our analysis. The constancy of
cross section along thez direction allows one to treat th
cavity as a section of an infinite waveguide, closed on b
its ends by conducting walls. Because our cavity is thin
large number of TE resonances occur for frequencies be
the lowest-order resonance of the TM type. In this way
avoid the vector nature of the electromagnetic field. Fina
the rectangular shape of all three cavity subregions simpl
the calculations.

The starting point of the analysis is to utilize th
waveguidelike shape of the cavity. This property causes
existence of the basic TE and TM field polarizations as w
as guaranteeing that any solution can be expanded
propagating modes of the typeX(r )5X(x,y)exp(ibz). Here
X denotes any of the electromagnetic field vectors andb is
the ~real! propagation constant of the mode.~We take all
metal to have infinite conductivity.! The time dependenc
exp(2ivt) is implied. For the TE modes the following rela
tionships hold:

FIG. 11. Same as Fig. 10, but on a vertically and horizonta
expanded scale in the range 0< l<30 cm.
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m0v

b22k2
ez3¹'Hz~r !, ~5.1!

H'52 i
b

b22k2
¹'Hz~r !. ~5.2!

It follows that all field components can be obtained fro
Hz(r … alone. Note that for TE polarizationEz50, so the
electric field vector remains in thexy plane.

For E andH to fulfill Maxwell’s equations,Hz must sat-
isfy the two-dimensional Helmholtz equation everywhere
side the cavity

¹'
2 Hz~x,y!1k2Hz~x,y!50, ~5.3!

with the boundary conditions

n•¹'Hz50. ~5.4!

The symbols used above have the usual meaning: the
script' denotes the transverse part of a vector or an op
tor, ¹ is the gradient operator,ez is the unit vector in thez
direction, n is the unit vector perpendicular to the cavi
boundary,k5v/c is the wave number,c is the velocity of
light, andm0 is the permeability of vacuum. The parameterk
in the Helmholtz equation~5.3! is the transverse wave num
ber, which is related to the propagation constantb and the
wave numberk by

k25b21k2. ~5.5!

At the wallsz50 andz5b of the cavity the transverse com
ponent of the electric field must vanish. In order to mat
these conditions the allowed values of the parameterb are
bn5n(2p/c), n51,2, . . . .

This establishes the longitudinal dependence of the fi
It is of the form sin(bnz) for Ex , Ey , andHz and of the form
cos(bnz) for Hx andHy . The occurrence of sine and cosin
form factors is related to the different symmetry properties
the various field components under the transformat
b→2b. But what about the transverse characteristics?
answer this question we have to solve Eq.~5.3! together with
Eq. ~5.4!. This yields the allowed valueskm for the trans-
verse wave numberk and, of course, the transverse fie
Hz(x,y). The ~dispersion! relation

vmn5cAkm
2 1bn

2 ~5.6!

gives the resonant frequencies. The central question no
how to find thekm’s. We begin by making use of the simpl
shape of the cavity. Because the cross section can be
into three rectangular sections:~I! 0,x,H, 0,y,d; ~II !
h,x,H, d,y,d1s; and ~III ! 0,x,H, d1s,y,a,
Hz(x,y) can be expanded in a Fourier series of the form

y



312 57BAUCH, BŁȨDOWSKI, SIRKO, KOCH, AND BLÜMEL
Hz~x,y!55
(
n50

`

Ancos~hny!cos~gnx! ~ I!

(
n50

`

$Cncos@zn~y2 ā !#1Dnsin@zn~y2 ā !#% cos@dn~x2h!# ~ II !

(
n50

`

Bncos@hn~a2y!#cos~gnx! ~ III !.

~5.7!
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The new symbols areā5d1s/2 ~the position of the cente
of the bar!, gn5np/H, dm5mp/(H2h), hn5Ak22gn

2,
and zn5Ak22dn

2. The coefficientsAn ,Bn ,Cn ,Dn are the
Fourier amplitudes to be determined. It is possible to pro
that Eq. ~5.7! solves the Helmholtz equation~5.3! and
matches the required boundary condition~5.4! at all cavity
walls. What remains is to ensure the continuity of the fie
that crosses the subregions boundaries aty5d andy5d1s
and to match the boundary conditions~5.4! at both faces of
the metallic bar.

The remaining steps are straightforward. One choo
large enough numbersNmax and Mmax of the Fourier com-
ponents in the corresponding subregions I and III, and
respectively, and sufficiently large numbers of mesh point
the boundariesy5d and y5d1s. Then, by imposing the
continuity and boundary conditions at each mesh point
obtains a set of linear equations for the amplitud
An ,Bn ,Cn ,Dn . A correct choice of numbers makes th
number of equations equal the number of unknown am
tudes. Therefore, a nontrivial solution exists if the determ
nant of the corresponding matrix of coefficientsM is zero.
Since the matrix elements still depend on the parametek,
the equation

Det M ~k!50 ~5.8!

is the desired equation for thekm’s and thus determines th
resonance frequencies of the cavity. The last two steps,
the computation of the determinant and the calculation of
zeros of Eq.~5.8!, were done numerically.

We used the theoretical method described above to m
calculations for several rectangular cavities with the meta
bar placed in the positionsM1 and M2. First we compared
calculated eigenfrequencies with measured ones and fo
good agreement. Over the range 2–6 GHz discrepan
were on the order of several megahertz, which we attribut
small imperfections of the shape of the experimental cav
The Fourier transforms of the theoretically calculated le
density for the experimental cavity with the metallic bar
positionsM1 and M2 are shown in Figs. 10~b! and 11~b!;
they show excellent agreement with the respective Fou
transforms of the experimental resonance data.

In order to get a closer look at the non-Newtonian R
orbits we calculated the first 972 resonances~frequency
range 0–12.5 GHz! of a larger rectangular cavity with th
following dimensions:b540 cm,a546 cm, andH51.2 cm.
The metallic bar insert had the same rectangular cross
tion as was used in the experiment and it was placed
positionsM1 andM2, respectively. Figure 12 shows the Fo
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rier transforms of the level density for 0< l<50 cm. The
shape of the peaks and the shoulders in the Fourier trans
suggests that for the bar in positionM1 the non-Newtonian
RS orbits have the lengthl .10 and 14.8 cm and for the ba
in positionM2 l .17 and 21.8 cm, respectively. This agre
with our expectations. The internal bounce periodic or
peak expected nearl 54.76 cm in theM1 transform is ob-
scured by the steeply rising wing atl'5 cm, but it is barely
visible as a small peak in theM 2 transform. The length of
the M2 analog of theM1 periodic orbit that occurs a
l 524.76 cm isl 538.76 cm. It is responsible for the dotte
peak atl'40 cm in Fig. 12.

We did another set of calculations for a rectangular cav
of the following dimensions:b580 cm, a592 cm, and
H51.2 cm. The metallic bar had a 4.2 mm height and a
cm width. It was placed in positionM1. We calculated 3959
resonances from 0 to 12.5 GHz. Presented in Fig. 13,
Fourier transform of the calculated level density shows pe
~shoulders! very close to the expected positions for no
Newtonian RS orbits, which are predicted to occur atl 510,
20, 30, and 40 cm, respectively.

VI. SEMICLASSICAL ANALYSIS

Locations, widths, and heights of the non-Newtoni
peaks shown in Fig. 8 can be estimated semiclassically
order to illustrate the procedure, we focus on the no
Newtonian external bounce orbit, which, for caseD2, occurs
at l'14 cm. On the basis of the theoretical framework p
vided in Refs.@2,4#, we obtain its contribution to the oscil
lating part of the scaled density of resonances as

FIG. 12. Theoretical computation of the Fourier transform of t
level density of the rectangular metal-loaded 40346 cm2 cavity in
the range 0< l<50 cm. Solid line, caseM1, dotted line, caseM2.
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r̃ s~E!5~Rr/2pk!sin~2kR!, ~6.1!

where

r 5
12Ae

11Ae
~6.2!

is the reflection coefficient andR57.17 cm is the radius o
the circular end cap of the cavity~see Fig. 6!. The Fourier
transform~3.1! of r̃ s(E) can be performed analytically fo
v51. Neglecting an additive nonresonant term, we obta

uF~ l !u25
R2r 2

4p2

sin2@~2R2 l !K/2#

@~2R2 l !/2#2 , ~6.3!

whereK5AE50'1.54 cm21. For largeK Eq. ~6.3! becomes

uF~ l !u2→
R2r 2

2p
Kd~2R2 l !. ~6.4!

This result shows that in the limit of largeK isolated non-
Newtonian orbits indeed contribute ad-function singularity
to F( l ), as was conjectured in Sec. II on the basis of E
~2.15!. In addition, Eq.~6.4! confirms that the location of the
external bounce orbit is indeed expected atl 52R'14 cm.
For finiteK we obtain peaks broadened inl with full width at
half maximum~FWHM! of

G'5.57/K. ~6.5!

In the present caseG'3.6 cm, which agrees well with th
widths of the peaks atl'14 and 19 cm in Fig. 8. We defin
the strength of a peak to bes5* uF( l )u2dl. According to Eq.
~6.4!, we expects50.41 cm. Estimating the strength of th
peak atl'14 cm in Fig. 8 as its height times its FWHM, w
obtains'0.43 cm. The experimental result and the theor
ical estimate for the strength are close. Though encourag
this agreement is fortuitous for the following reasons.~i! The
Fourier transform of the experimental resonances contai
window function. If it is taken into account, it reduces th
theoretical estimate of the strength by a factor 4.~ii ! Over the
whole range of the 50 resonances used in the Fourier tr

FIG. 13. Theoretical computation of the Fourier transform o
large rectangular metal-loaded cavity. Size of the cavity, 80392
cm2; width of the metal bar, 10 cm; position of the bar,M1 (d55
cm!.
.

t-
g,

a

s-

form, the level densityr̃ s(E) exhibits only about three os
cillations. We expect that the full information on the no
Newtonian orbit is not yet contained in such a small num
of oscillations. Consequently, the heights of the peaks in F
8 are not yet converged in the number of resonances.
confirmed this by computinguF( l )u2 with inclusion of 40,
45, and 50 resonances in the transform~3.1!.

VII. DISCUSSION

There are several points about our experiment and its
oretical interpretation that need to be discussed. Let us s
with the number of states used in our experiments with
dielectric bar. The present evaluation of our data is based
only the first 50 states. This does not mean that we w
unable to measure more resonances, but it does mean
aboveN'50 we could not guarantee that we would not m
any levels. With the help of theoretical calculations we fou
that missing a level has disastrous consequences for l
tions, heights, and even the very appearance of the n
Newtonian peaks in the Fourier transform. This expla
why, from the experimental point of view, we had to restr
ourselves to a ‘‘safe’’ range of resonances, here 50.

With 50 states we are able to resolve the non-Newton
peaks in the experiments with the dielectric bar, but we
unable to resolve the cluster of Newtonian peaks in Fig
The smallest distance between peaks in this cluster isD l'1
cm. To resolve the associated peaks one should aim
resolution ofG,0.2 cm, whereG is the width of the associ-
ated Newtonian peaks. Assuming that the shape of th
peaks is essentially given by Eq.~6.3!, we use Eq.~6.5! to
estimate the minimum necessary wave numberKmin for the
required resolution. We obtainKmin55.57/0.2 cm '28
cm21. According to the leading term of the mean stairca
functionN̄(E) derived in Sec. III, this means that the Fouri
transform should be based on at leastN'aKmin

2 '18 000
states. This is obviously way beyond the reach of our pres
experiment and it is also beyond the number of resonan
(;103) being investigated in recent experiments with emp
superconducting cavities; see, e.g., Ref.@25#. Therefore,
given the present state of the experimental art, we did
even attempt a microwave cavity experiment that would
able to fully resolve thousands of resonances. However,
present results establish the need for improving the exp
mental state of the art so that converged locations
heights of RS peaks can be compared with theory.

In this connection we may point out that the discuss
presented in Sec. VI presents a direct comparison of se
classically computed peak heights, widths, and locations
responding to non-Newtonian RS orbits with peaks result
either from a numerical solution of the Schro¨dinger equation
or from direct experimental measurements. Another imp
tant point presented is the extraction of information on no
Newtonian orbits from our computations of the resonan
of the metal-loaded cavity reported in Sec. V. In our comp
tations we take the vector nature of the electromagnetic fi
explicitly into account. This is important since a metall
step, which does not fill the full height of a two-dimension
cavity, generates a fringe field that is inhomogeneous o
the height of the cavity. Thus the magnitude of the elec
field in the vicinity of a metallic step depends nontrivially o
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all three spatial dimensions. Qualitatively, the same con
erations apply if an inserted dielectric bar does not fill t
entire height of the cavity. Thus the one-to-one corresp
dence with the Schro¨dinger equation can be broken local
near the step. Therefore, in metal-loaded cavities a rea
ably sharp RS boundary~and thus nearly global equivalenc
with a Schro¨dinger equation! occurs only if the wavelength
is much larger than the spatial extent of the inhomogen
of the electromagnetic field in the step region. Metal-b
loaded cavities are very similar to ‘‘two-height’’ cavitie
whose investigation in the context of ray splitting was su
gested earlier in Ref.@2#.

As part of a more general discussion of our experime
let us emphasize what is different about non-Newtonian
orbits in the Fourier domain as opposed to resonances in
frequency domain. The central point of our work is not t
emergence of individual, different frequency resonances c
nected with waves bouncing inside and outside the dielec
resonances whose frequencies can be computed from th
tical path length of the non-Newtonian orbits identified
our experiments. If this were the central point of our pap
nothing would be different about our experiment since re
nances of this nature are routinely used in~Fabry-Pe´rot or
other! interferometers in many laboratories around the wo
But this is not so. The non-Newtonian orbits we find expe
mentally are associated with peaks that appear in theFourier
transformof the total set of all cavity resonancesonly when
the dielectric bar or metal step is put into the cavity. On
this difference is appreciated, the peaks in the Fourier tra
form are both different and surprising.

In this paper it is not our intention to dwell on the deep
nature of the non-Newtonian orbits identified in our expe
ments. Rather, our present goal is to prove the existenc
non-Newtonian orbits by using their characteristics as fa
they are established in the literature. We are not aware of
published papers that predict more about the non-Newto
orbits than we established experimentally. We hope, h
ever, that our paper will inspire further theoretical work
the nature of the non-Newtonian orbits now that we ha
proved their existence experimentally beyond any reason
doubt.

In particular we think that prebifurcation ghosts@26# have
nothing to do with the non-Newtonian RS orbits that we fi
in our experiments. For instance, it is known@26# that pre-
bifurcation ghosts disappear exponentially as a function
energy. On the other hand, it is easily seen by a high-ene
expansion of Eq.~2.20! that the reflection coefficient van
ishes only as a power law in the energy. Thus, contrary to
behavior of prebifurcation ghosts, our non-Newtonian orb
continue to be important at high energies. We think that t
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behavior establishes a profound difference between our n
Newtonian orbits and the ghost orbits discussed in the lite
ture. Moreover, our non-Newtonian orbits are not the res
of complex solutions in a complexified phase space. Ra
they occur as a result of a boundary condition imposed at
ray-splitting surface. However, we should point out that
clusion of the ghost contributions in Eq.~2.15! would cer-
tainly improve the agreement between the semiclass
theory of RS systems and the complete quantum-mechan
theory. As a matter of fact, since non-Newtonian perio
orbits undergo much the same type of bifurcations as N
tonian periodic orbits, we expect contributions to Eq.~2.15!
from Newtonian as well as non-Newtonian ghosts. Identi
ing and evaluating these non-Newtonian ghost contributi
quantitatively must be left for future work.

VIII. SUMMARY AND CONCLUSIONS

The main thrust of our paper is to present experimen
and theoretical evidence for the existence of non-Newton
orbits produced by ray splitting in dielectric- and meta
loaded cavities that are of relevance to the context of qu
tum chaos. All our experimental results are corroborated
supported by detailed numerical calculations and interpre
within the framework of the extended Gutzwiller formu
~2.15!. For the location and height of a particular type
non-Newtonian orbit we obtained qualitative agreement w
the results of semiclassical calculations.

Based on the discussion presented in Sec. VII, we c
clude that our experiments and accompanying theory es
lish beyond any reasonable doubt the existence, widths,
locations of peaks in the Fourier transform ofr̃ (E) that can
be associated with non-Newtonian periodic orbits. Since
splitting occurs in all wave systems with sharp, partia
transparent interfaces we expect the signatures of n
Newtonian RS orbits inr̃ (E) as a universal feature of all RS
wave systems.
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