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Signature of non-Newtonian orbits in ray-splitting cavities
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Ray splitting is a universal phenomenon that occurs in all wave systems with sharp interfaces. A key
consequence of ray splitting is the occurrence of non-Newtonian periodic orbits whose presence can be
revealed in the oscillating part of the density of states. We use thin dielectric- and metal-loaded microwave
cavities to identify experimentally the signature of non-Newtonian periodic orbits caused by ray splitting at
sharp interfaces and corroborate all our experimental results with detailed numerical computations and semi-
classical theory. For two-dimensional ray-splitting problems the electromagnetic Helmholtz and quantal Schro
dinger equations are equivalent. Thus our results are directly relevant to quantum chaos studies.
[S1063-651%97)11612-9

PACS numbdss): 05.45+b

I. INTRODUCTION physics. This was pioneered by 8kmann and Steinf8],
who began the use of microwave cavity resonators for inves-

The behavior of waves at the interface between two medigigating the validity of the conjecture of a universal connec-
is of fundamental importance in many fields of physics. Thetion between classical chaos and quantal energy level statis-
most widely studied phenomena in this context are reflectiortics in two-dimensional billiards. Using microwave cavities
refraction, and diffraction. In the limit of small wavelengths, for which analytical solutions are not possible, the paper by
the geometric optics limit, it is possible to assign rays toSridhar and Kudroll{9] presented an experimental demon-
wave fronts. Reflection and transmission at sharply definedtration of the consequences of the theorem of isospectral
interfaces then give rise to the phenomenon of ray splittingdomains. Information came both from the eigenfrequency
Ray splitting is universal. It occurs, e.g., in optics when aspectrum, as i8], and from experimental maps of the
light ray encounters the interface between two differenteigenfunctions obtained with a frequency pertubation
transparent media of different index of refraction; it occurs inmethod[10] used for these purposes [ihl]. The predicted
hydrodynamics when a surface wave passes between twofluence of time-reversal symmetry breaking on energy-
regions of different depths; it occurs in geophysics wherdevel statistics was checked by 8bal.[12] and Stoffregen
waves generated by an earthquake experience ray splitting at al.[13]. The paper by Sirket al.[6] presented an experi-
fault lines. While these manifestations of ray splitting aremental demonstration of the predicted existence of non-
well known and studied in detail since the times of Snell andNewtonian orbits by analyzing resonance spectra of a micro-
Descartes, the wave implications of ray splitting were onlywave cavity partially filled with a dielectric, Teflon. The
recently investigated. Couchmat al. [1] studied ray split- purpose of the present paper is to amplify the results ob-
ting in the context of acoustics and quantum chaos. Prangmined in[6] and to present the results of measurements and
et al.[2] computed analytically the ray-splittif@RS) correc-  theory on the wave implications of ray splitting in metal-
tion to the Weyl formuld 3] and suggested specific experi- loaded microwave cavities. Because the electromagnetic
ments for the purpose of studying RS phenomenaniglu Helmholtz and quantal Schdinger equations are equivalent
et al.[4,5] investigated RS phenomena theoretically in a chain two dimensions, our results are directly relevant to quan-
otic, circular, step billiard. They identified the signatures oftum chaos studieg2,3].
non-Newtonian RS orbits in the Fourier transform of the The paper is organized in the following way. Section ||
scaled level density, thereby demonstrating numerically th@resents some theoretical background relevant for RS sys-
importance of periodic non-Newtonian RS orbits. Sidtal.  tems, including the precise nature of the predictions of quan-
[6] verified experimentally the predicted manifestations oftum theory on the importance of non-Newtonian orbits for
ray splitting of electromagnetic waves. Non-Newtonian or-RS systems. These predictions are illustrated with the help of
bits also appear in the context of diffractidid], a topic  simple, one-dimensional RS models. Section Il presents our
closely related to RS phenomena. experiments and theory on the spectra of empty cavities.

Central points of this paper are to check the theoreticallhese results establish the reliability of our experimental and
predictions[1,2,4,9 and to elaborate on the experimental theoretical methods. Section IV presents our experimental
results[6] on the wave implications of ray splitting. To this evidence for the existence of non-Newtonian orbits in the
end we use thin microwave cavities partially loaded withcontext of thin microwave cavities partially filled with Te-
dielectric or metal in order to generate ray splitting of elec-flon. Section V investigates thin cavities partially filled with
tromagnetic waves at sharp interfaces. Thus our paper cometal. This system also shows the signatures of non-
tinues the use of microwave resonance spectroscopy to veriffewtonian orbits. Section VI analyzes our theoretical and
wave effects predicted on the basis of semiclassical quantuexperimental results in the light of semiclassical theory. Sec-
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FIG. 1. Quantum propagation in the one-dimensional square- FIG. 2. Newtonian ) and non-NewtonianNN) periodic or-
well potential. Starting fromx, the pointx’ in the well can be bits in a one-dimensional square well potential with a potential step
reached in a variety of different ways. The shortest paths aref finite heightV,.
sketched and denoted Iy (direct path, A (shortest path connect-
ing x with x” via a single bounce off the left-hand wall of the well coursex’ is reachable fronx by any number of overshoots
andB (shortest path connectingwith x" via a single bounce off  followed by bounces off the walls of the square well. This
the right-hand wall of the well All connecting paths in the square explains the infinite sum in Eq2.2). The level density(E)
well are Newtonian. of the square well is easily computed using the trace formula

p=—ImTr G/7. We obtain
tion VII discusses our results. Section VIII summarizes our

findings and concludes the paper. mb *

p(E)=5— 1+2>, cog2nbk)|. (2.3
f k7T n=1

Il. THEORETICAL CONTEXT

h The level density(2.3) can be written in the form of a

To appreciate the issues involved when dealing with t
P 9 éButzwnIer formula[3]

semiclassics of RS systems, we shall use some on
dimensional systems to illustrate all the pertinent ideas and — ~

nomenclature needed to discuss two-dimensional RS systems p(E)=p(E)+p(E), 2.4

in Secs. llI-VII. Consider the one-dimensional square-well o

potential sketched in Fig. 1. The normalized elgenstatewhereP(E) dn/dE=mb/% k7 is the average part of the
of a particle of massm in the well are y,(x) level density and

=+/2/b sin(hmx/b), n=1,2, ... .Using these states we con- 12
struct the energy-dependent Green'’s function for propagation “(E)= — T(E EV/4 2
at energyE from x to x’ (see Fig. 1 p(E) Z (B)codnS(E)/7] 2.5
o Pa(X) P (X") is the oscillating part. For the square well there is only one
X" E)= 21 E-E.+ic (2.9 primitive periodic orbit at energ§. Its action,S(E) in Eq.

(2.5), is given by$p dx=%(2bk). The round-trip timeT (E)
With the help of Poisson’s formula E€2.1) can be cast into N this orbitis given byf (E) =9S(E)/JE=2bm/7k. Insert-
ing these results into E@2.5) reproduces Eq2.3).
m = The form of the level density2.3) suggests a straightfor-
G(X,X";E)= —>— 2 {exp(i|x—x"+2vb|k) ward method for extracting from it the actions of primitive
0 = periodic orbits and their repetitions: Fourier transformation

—exp(i|x+x"+2vb|k)}, (2.2 according to

wherek=2mE/%2. The result(2.2) can be interpreted in f(l):f [E(E)J expt —ikI)dE. 26
terms of multiple paths. The first term in E®.2) for v=0 E)

represents the direct path fraxto x’, denoted byD in Fig.

1. The term in the exponent is the classical action of this pat/sing p(E) in Eq. (2.6) produces a sharp peaklat 0 that

in units of . The second term in Eq2.2) for =0 repre-  corresponds to the zero-length periodic orbit responsible for
sents an indirect path fromto x’, which proceeds via one p(E). Using p(E) in Eq. (2.6) we obtain peaks only at the
reflection from the left-hand wall of the square well. It is actions of nontrivial periodic orbits. In the case of the square
denoted byA in Fig. 1. Another possibility of reaching’ well the Fourier transforn{2.6) is strongly peaked at mul-
starting fromx is to “overshoot,” i.e., reflect at the right- tiples of the “reduced actionly=S(E)/%k=2b, the length
hand wall of the square well and return x6. This path, of the primitive periodic orbit.

denoted byB in Fig. 1, is represented by the second term in  Let us now introduce a potential step into the square well
Eq. (2.2) for v=—1. The minus sign in front of the second of Fig. 1. We obtain the one-dimensional step billiard shown
term in Eq.(2.2) follows from both A and B involving a  in Fig. 2. The energy levels are obtained from the solutions
single reflection at one of the walls of the square well. OfE, of the transcendental equation
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100 ®
Fh~>, 8(1-mlp). (2.13
m=0
IF)P?
Thus we expect sharp peaks in the Fourier transform at mul-
50 | tiples ofl,~2.8 for our choice of parameters. Figure 3, how-
ever, shows tha#(l) contains many more peaks in addition
©.0) to those expected according to Eg.13. They occur at the
locations
. lij=ilg+jlc, 1,j=012..., (2.19
0

FIG. 3. Absolute square of the Fourier transform of the scale(ﬁ

level density of the step potential sketched in Fig. 2 &or 1,
b= #/2, andn=1/2. The peaks can be associated with linear com
binations of multiples of the action$g and I according to
lij=ilg+jlc,i,j=0,1,...,whereB andC refer to the two primi-
tive non-Newtonian orbit8 andC of Fig. 2. The assignments, )

of the peaks are indicated in the figure.

V1— 7 tanka)+tafkyl—n(b—a)]=0, (2.7
where
7=V, /E. (2.9
The level density is given by
p(B)=2, S(E-Ey). (2.9

With the potential step present Fourier transformatiorp of

will no longer yield sharp peaks at the actions of the primi-

tive periodic orbits since the classical acti§(E)=¢p dx
no longer scales ink. This, however, can be trivially
“cured” by calculating “scaled” energy level$4]. This is
done by computing the roots of E@.7) keepings constant.
This condition is automatically fulfilled for microwave cavi-
ties partially filled with dielectrid 2].

wherelg=2+1— n(b—a) is the reduced action of the orbit
in Fig. 2 and .= 2a is the reduced action of the orltin

ig. 2. SinceE>V,, neither one of the orbit® or C is
Newtonian: They are manifestly non-Newtonian. While the

orbit B is never Newtonian at any energy, note that the orbit
C evolves into the Newtonian orbiD for E<V,. This
simple one-dimensional example also shows that not all con-
ceivable non-Newtonian orbite multiply overcountable set

of orbits in the sense of Feynman’'s path integradse
equally important. Important are only those non-Newtonian
orbits, or rays, that originate by the processaf splitting at
sharp potential steps.

This discussion for the one-dimensional step potential
shows that non-Newtonian orbits are important for the fluc-
tuation properties of the level density of RS systems. To the
extent that they cannot be neglected in a proper semiclassical
treatment of RS systems, quantum mechanics must certainly
“know” about the non-Newtonian orbits. This observation
motivated the authors of Rdfl] to extend Gutzwiller’s trace
formula[3] (which includes only summation over periodic
Newtonianorbits) to a formula that also includes summation
over all periodicnon-NewtonianRS orbits. Their modified
Gutzwiller formula is[1,4]

(2.1

- ! [ SH(E)
p(E)_Im;2ihsinr(>\n/2)ex+( po T on

For the step potential shown in Fig. 2 we computed 20Qn, this formulap is the oscillating part of the level density,

scaled energy levels usirg=1, b= /2, and n=1/2. We
Fourier transformed the level densi®.9) according to Eq.
(2.6). The absolute square of the resulting transfogl)|2

is shown in Fig. 3. Sincey<1, meaninge>V,, the only

the sum extends over all periodic orbits of the systélaw-
tonian and non-Newtonianncluding repetitionsT, are the
traversal times of the primitive periodic orbits,, are the
associated stability indiceS,(E) are the classical actions at

primitive Newtonian periodic orbit is the one bouncing be-energyE, ¢, are phases, and

tween the left- and right-hand walls of the well. It is denoted

by A in Fig. 2. Its action is given by

S=tiklg, (2.10
where
lo=2[a+y1—n(b—a)]. (2.11

Simple Bohr-Sommerfeld quantization of this orbit yields

approximate solutions of E¢2.7) given by

Ko=2mnll,. (2.12

A= (2.16

I1 <1—|r,-|2>}

j=1

@n
H Iril?
i=1

are orbit weights, wherg, counts the number of reflections,
7, counts the number of transmissions of orbit number
and|r;|? is the reflection probability at encounter numbeit
a RS interface.

Inasmuch as Eq(2.195 is a good approximation to the

level densityp of a given RS system, the structure of Eq.
(2.19 again suggests using the Fourier transfai@rb) to

extract periodic orbit information fromp. Thus a Fourier

Using the wave number®.12 to compute the level density transformation of the experimental level density directly re-
(2.9), the Fourier transforni2.6) can be performed analyti- veals the content of Newtonian and non-Newtonian periodic
cally, giving orbits. This was the guiding principle we used in Réf to



Uy

0 x

FIG. 4. Sketch of an analytically solvable step potential of width
w and potential height); [15]. It serves to illustrate the difference
between the Newtonian and the non-NewtoniRS) semiclassical
limits.

demonstrate experimentally the signature of non-Newtonia
orbits in a thin microwave cavity loaded with a bar of Teflon.

An alternative semiclassical approach is Bogomolny’s
method of quantum surfaces of section. It works very well

for families of periodic orbits, and just like Gutzwiller’s for-
mula it can be modified to include non-Newtonian orbits.
According to Bogomolny’s approach, the oscillating part of
the level density is given bj4]

o

Imz

s=1

(2.17)

0|k

— 1 d .
P(E)Z; T T(E)S,

where?(E) is Bogomolny’'s transfer operator that is based
on semiclassical transition amplitudgls4]. In position rep-
resentation it is given by

A(9,9';E)[#°S(q,0';E) |
2mih | 4909 |

(0.9 E)=

i
xexr{gS(q,q’;E)anhase}; (2.18
where A is an amplitude that keeps track of successive r

els from starting poingg to end pointq’ on the quantum
surface of section. We shall use Bogomolny’s approach i
Sec. VI for the computation of the contribution of non-
Newtonian orbits to the level density.

A last question remains. When is ray-splitting important
As an aid to answering this question we consider reflectio

and transmission in an analytically solvable step potentia|

with variable width[15]. A particle P of massm and energy
E>U, incident from the left scatters off the potential
U(x)=Uqy/[1+exp(—x/w)] sketched in Fig. 4U, is the
strength of the potential ang is its width. Asymptotically
the wave function is given bys(x) = exp(kx)+rexp(—ikx)
for x——o and (x)=texpixx) for x—o, where
k=[2mE]¥%#, k=[2m(E—Uy)]¥¥#, andt is the trans-
mission amplitude. The reflection coefficientcomputed ex-
plicitly in Ref. [15], is

sinH mw(k—«
r=———-= I m( )]. (2.19
sini mw(k+ «)]
We are interested in the semiclassical limit that involves th
scattering of waves fak— 0 in the limit of a sharp potential
step, i.e.,w—0. The resulting double limit—0w—0 is
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undefined without further specification. There are two cases
of interest.(i) For fixedw we let4A—0 and only then let
w—0. This is the “Newtonian limit.” In this limit the ray
dynamics ofP is ordinary Newtonian mechanics; f&>U,
(E<Uy), P is transmittedreflected with unit probability to

the right(left). (ii) For fixed# we letw—0 and only then let
h—0. This is the RS limit. In this case the ray dynamics of
P is a non-Newtonian, nondeterministic mechanics that in-
volves ray splitting at the potential st¢p]. The RS limit of
Eq.(2.19 is

r=(k—«x)/(k+«), (2.20
Which, it should be noted, is independent &f Conse-
guently, even foE>U, and%—0, P is not transmitted with
unit probability; it is reflected with finite probability to the
left. While for a Newtonian orbit reflection and transmission
are decided on the basis of energy and momentum consider-
ations only, reflection and transmission in the RS limit are
stochastic processes. By “stochastic” we mean the follow-
ing. A ray impinging on the RS boundary has to “decide”
whether it is transmitted through the RS boundary or is
specularly reflected. Reflection and transmission are gov-
erned by the reflection probabiliti¢s|2. Thus the proper ray
dynamics in the RS limit is not deterministic; it is truhpon-
deterministic This is the reason why we chose the word
stochasticfor characterizing the ray dynamics in the RS
limit. The consequences of the stochasticity of the ray dy-
namics were already explored in several theoretical publica-
tions[1,4,16.

Returning to the extended Gutzwiller formula.15, we
see that non-Newtonian orbits contribute with appreciable
weight only if the reflection coefficients are large. The
weights (2.16 of short non-Newtonian RS orbits in Eq.
(2.15 are essentially proportional to the product of thg?.
Therefore, for a particular non-Newtonian orbit to be impor-
ant, the product of the reflection probabilities should not be
0o small. This translates physically into the requirement that
the width of the RS interface has to be very small compared

"o the local wavelength. AE=2U,, e.g., the reflection prob-

ability |r|?> computed from Eq(2.19 reaches the 1% level

~only if the width of the potentialv is smaller than about 1/20
'rg)f a wavelength. This answers our question. Ray splitting is

mportant whenever the potential varies on a scale that is
much smaller than a wavelength. This requirement is easily
fulfilled in the microwave context where typical wavelengths

are in the centimeter regime and the widths of dielectric in-
terfaces can be machined to micrometer precision.

In the following we are mainly concerned with two-
dimensional RS billiards. A RS billiard is characterized by
the existence of a RS boundary in its interior as shown in
Fig. 5. The(sharp RS boundary of lengtiR divides the
billiard into two isolated area8 andA’ wherein the poten-
tial is V=0 andV=V,, respectively. The outer perimeters of
the two separate domains are denoted_bgndL’, respec-
tively, as shown in Fig. 5. The basic characteristic of RS
billiards is the mean level density, computed from the mean

estaircase function3] M(E) according to

p(E)=dME)/dE. (2.20)
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7.17
V=0

8.06

RS boundary

r V=

FIG. 5. Typical ray-splitting billiard. The ray-splitting boundary
divides the billiard into two separate regions of afegerimeter,
V=0 and ared’, perimeterL’, V=V, respectively.

For Dirichlet boundary conditions the mean staircase is
given by (=1, m=3)

— 1
ME V)= E[AE%—A’(E—VO) 0(E—Vy)]

1
_ E[L\/E+ L' VE—Vp8(E—Vy)]

+R\Worrd E/Vo) +AME, V), (2.22

FIG. 6. Sketch of the Bunimovich stadium microwave cavity.
Dimensions are given in cm(@ The empty cavity.(b) The
dielectric-loaded cavity. In order to study the shift in position of

. L, . — . periodic non-Newtonian RS orbits, the positionof the Teflon
where§ is Heaviside’s step function andgs s the RS cor- dielectric bar, which entirely fills the 0.8 cm height of the cavity,

rection derived iri2]. The RS correction in Eq2.22 was can be shifted along the straight section of the cavity. The position

checked in[2] _fc_Jr an integrable RS billiard with mixed shown d=9.55 cn) corresponds to one of the positions we used in
boundary conditions and was found to be accurate. It wagy experiments.

checked il 17] for a chaotic, triangular RS billiard and was
again found to be accurate. Additional corrections to the

mean level density (E) that arise from topological charac- depths of the coupling antennas to ensure that we missed no
teristics of the billiard, such as corners and holes, are subevels up to a certain frequency, obtaining 50 such resonant

sumed into the terMA_/(E,VO) in Eq. (2.22. frequencies;, j=1, ...,50. The corresponding wave num-
bers arek;=27v;/c. We define the “energiesE;=k’. In
ll. EMPTY CAVITIES order to extract the oscillating part of the level density

from the measured data, we need the mean staircase function

This section sets the stage for our experiments 0“/\7(E) i.e., the number of resonances up to the endgy

dielectric- and metal-loaded cavities reported in Secs. IV an%\ccording to Eq.(2.22 the first two terms in a systematic
V, respectively. The main purpose is to present our experi- ) T ,
mental technique and to make contact with existing theongXPansion of M(E) in powers of E are given by

and experiments on empty cavities. Thus our results odV(E)=aE— BE, wherea=A/4m andf=L/4m. With the
empty cavities are the point of departure and will serve as thgeasured dimensions of the cavity given in Figa)6and
reference gauge for our experiments and theory with loadewith a conservative estimate of their uncertainties, we obtain
cavities. a=22.0(5) cnf and 3=4.878) cm. A least-squares fit of

It is well known [18] that in the case of thin cavities the the measured staircase of cavity resonances yietd22.2
Maxwell equations for the vector electromagnetic waves recm? and S=4.89 c¢m; both agree with theoretical expecta-
duce to the two-dimensional situation of a Helmholtz equations based on measured dimensions.
tion for a scalar wave problem, i.e., a Sctimger equation. For an empty billiard the classical actions in Eg.15
(An empty cavity is “thin” for frequenciesv less than the are given bysn(E)zgsynﬁ.dizﬁmn, wherel , is the geo-
cutoff frequencyv.=c/2H, wherec is the speed of light and - eric length of the periodic orbig, . Since the actions scale
H is the cavity heighj.Hence microwave cavmgs are excel- as\E and the round-trip time,,(E) scale as 1/E, a Fou-
lent models for quantum chad$,12,13,19. Figure Ga) . ~
shows the shape and the dimensions of our cavity, a Buni-€" transform ofp(E) shows_ peaks at the Igngthng of

periodic orbits. We determined the density of states

movich stadiun3]. A denotes its area ard its perimeter. f th v BN ich  stadi di :
We used a transmission methj@0] to measure the resonant or € emply unimovich —stadium — according 1o

frequencies of the empty cavity. We were careful to compar@(E) =252, 8(E—E;), Subtracted the mean densipy(E)
spectra obtained with different placements and insertion= dA{E)/dE to obtainp(E), and computed
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FIG. 7. Absolute square of the Fourier transform of the fluctu-
ating part of the density of resonances of the empty cavity shown in )
Fig. 6(a). The assignment of peaks bf(1)|2 to simple, periodic FIG. 8. Absolute square of the Fourier transform of the fluctu-
orbits is shown along with the lengthof each such orbit in centi- ating part of the density of resonances shown on an expanded ver-
meters. tical and horizontal scale over the intervak0<23 cm. Dotted

line, empty cavity; solid line, Teflon dielectric insertéchseD;,
d=9.55 cm); dashed line, Teflon dielectric insertgdase D,
Ermay_ d=7.17 cm. The assignment of peaks in the transform to simple,
FH= f p(E)w(E)exp —ikl)dE, (3.1 periodic non-Newtonian RS orbits is shown along with the optical
0 path lengthl for each such orbit given in centimeters.

whereE,, .= Eso and w(E) =sin/E,,5,) is a window func-
tion that suppresses the Gibbs overshoot phenomgzin
Figure 7 shows the absolute squareFf). As expected, we . . . .
see pronounced peaks near the lengths of certain periodig the frequency domain. For the discussion below, one
orbits. As shown in Fig. 7, the large peakl at52 cm covers should not t.ry .to. focus on what addmg the Teflon bar m|g.ht
several unresolved periodic orbits. As is discussed in Sed0 to any individual resonance in the frequency domain;
VII, we estimate that thousands of levels would be needed téather, one should focus on what it does to the spectrum as a
resolve them in this cluster. It is important to note that for thewhole and, in particular, to its Fourier transform. While de-
empty cavity no significant peak ilF(1)|? occurs below Spite the presence of the bar the appearance of the Fourier
|=20 cm. transform forl>20 cm is essentially unchanged, striking
features appear fdr<20 cm. On an expanded scale, Fig. 8
IV. DIELECTRIC-LOADED CAVITY shows| F(1)|? for the empty cavitydotted ling and the two
) ) ] _ dielectric case®; (full line) and D, (dashed ling While
This section demonstrates the existence of non-Newtoniagyen on the expanded scale the transform for the empty sta-
orbits in the presence of ray splitting. To_qchleve th'_s goaldium shows no significant structure belbw 20 cm, the case
we went beyond the conventional empty billiard experlmentsDl shows two peaks, one k5.5 cm and another #t=19

(see Secs. | and )by introducing a bar of Teflon dielectric - ) .
into the Bunimovich cavity described in Sec. Ill. Experi- cm. The _peak alt—_5.5_ cm can be ex_plalned_ as the S|_gna'§ure
of a family of periodic non-Newtonian orbits bouncing in-

ments of this type were previously suggested in R&f. . g i . .
Figure &b) shows the shape, placement, and dimensions O§|_de the dielectric bar parallel to the major axis of the sta-

the dielectric bar. In our experiments it was possible to sligd!ium- Inside the dielectric the action of a periodic orbit is
the bar parallel to the major axis of the stadium using thénultiplied by the index of refraction. In other words, the
distanced from one tip of the cavity to describe its position. €ngth of & periodic orbit is not the geometric length but the
Figure &b) shows the bar for one of the placements we used@ptical path length. With the dimensions given in Fig. 6 we
in our experiments. The dielectric constant of Teflon isPredict that the optical path length of this orbit bouncing
known experimentally22] to bee= 2.08, with essentially no  inside the Teflon bar ik, ,,=2X ex 1.9 cm=5.5 cm. This
frequency dependence over the range of interest in this papés in excellent agreement with the location of the first peak of
[23]. D,. The second peak dD, can be interpreted as a non-
We studied two cases corresponding to two differentNewtonian RS orbit bouncing between the round tip of the
placements of the dielectric baD,) d=9.55 cm and P,)  cavity and the nearest edge of the Teflon [2#. Since this
d=7.17 cm. For each case we measured the first 50 resorbit travels entirely outside the dielectric, its optical path
nance frequencies and performed the windowed Fourielength should equal its geometric lengths2Xx9.55 cm
transform as described in Sec. [Bee Eq.(3.1)]. For the =19.1 cm. This agrees well with the experimental data. Note
correct interpretation of our Teflon experiments it is impor-that shifting the location of the Teflon bar should not influ-
tant to realize that the Teflon bar exertglabal effect on the ence the location of the non-Newtonian “internal bounce”
frequency spectrum: It shifts the positionsalf resonances orbit atl=5.5 cm. Indeed, the first peak in the Fourier trans-



310 BAUCH, BLEDOWSKI, SIRKO, KOCH, AND BLUMEL 57

Z - 80 T M v v 1 v v v 1
Yy
, d | ]:|2 | (
I a)
8 60 -
f
a
40 +
; b 20 F
FIG. 9. Sketch of the rectangular cavity loaded with the metallic 0
bar. In analogy to the dielectric-loaded Bunimovich stadiisee 0
Fig. 6(b)] the metal bar can be shifted in tigedirection. The posi-
tion shown corresponds to one of the placements used in our ex- 80
periments M,, d=8.5 cm). The dimensions of the cavity ase=23 F 2
cm, b=20 cm, ands=2.38 cm. 1™ 1
60
form of D, occurs at the same position as the peak inDhe
data. We expect that the non-Newtonian orbit bouncing out- 40
side the dielectric, however, should shift to the new position
[=2X7.17 cm=14.34 cm. Experimentally, the second peak
in D, does occur near this expected position. 20 r
The reason for the non-Newtonian nature of the internal
and external bounce orbits identified in our experiments is 0

the following. As shown in Ref.2], the Helmholtz equation 0

for the two-dimensional cavitypartially) filled with dielec-

tric can be interpreted as a Schimger equation with an

attractive potential over the extension of the dielectric. Since ) )

an internal bounce orbit is one that bounces at normal inci- F1G- 10. Fourier transform of the level density of the>226

dence and apositive energyinside an everywhere negative cm .rectar)gular cavity in the rangesqs140 cm. Sollld Ilne.,.metal

(attractivé potential, it cannot correspond to a Newtonian 22" in positionM, (d=5 cm); dotted line, metal bar in positiol ,

orbit. The same reasoning applies to orbits bouncing off théd:&5 cm. (8) Experimental resultsb) Theoretical results.

dielectric interface at normal incidence from the outside. In

the Newtonian case a trajectory normally incident on an atwith x (not shown in Fig. 8 In our experiments we investi-

tractive potential is transmitted with probability one. Thel’e-gated the spectrum of the cavity for two different positions

fore, the peaks observed near19 and 14 cm cannot origi- of the metallic barM,;, d=5 cm andM,, d=8.5 cm. For

nate from Newtonian periodic orbits. each position of the bar we measured the first 54 resonance
This result concludes our demonstration of the signaturgrequencies and calculated theindowed Fourier trans-

of non-Newtonian orbits in the resonance spectrum of a parforms of the corresponding level densitigsg. 10a)]. Fig-

ticular ray-splitting system, the dielectric-loaded cavity inure 14a) shows the structure of the peaks associated with

the shape of a Bunimovich stadium. To strengthen our clainhon-Newtonian RS orbits on an expanded scale in the range

of the universality of the presence of non-Newtonian orbits <30 cm.

in any RS system, we now turn to an investigation of ray- Ray-splitting occurs near the sharp front and back edges

splitting phenomena in thin, metal-loaded microwave cavi-of the metallic bar insert. For metallic steps no refraction

ties. occurs and the optical path length is equal to the geometric
path length[2]. For the two bar positions we predict the
V. METAL-LOADED CAVITIES following primitive, non—Ne\/vtor_]ian, periodic orbits with
_ . _ _ geometric length$<30 cm that involve no more than two
We studied experimentally a thin rectangular cavity ofreflections at the edges of the metallic blt;: 1=4.76,

dimensionsH=1.2 cm (heighy, a=23 cm (length, and 10, 14.76, 24.76 cniyl,:  1=4.76, 17, 21.76, 24.24, 29 cm.
b= 20 cm(width), with a metallic bar inserfsee Fig. 9. The  The three peaks in each of the panels of Fig(dre in the
metallic bar is of widthb=20 cm and has a rectangular crossdotted line, two in the solid lineaccount for at least three of
sectionhXs, whereh=0.42 cm (heighy and s=2.38 cm the listed periodic orbits. As was the case for the Bunimov-
(length. In analogy to the dielectric case, we denote theich stadium, see Secs. Ill and IV, a much larger number of
distance of the bar from the nearest end wall of the cavity byigenfrequencies would be needed to resolve all structures in
d. We also find it convenient to define the coordinate systenthe two Fourier transforms. Many of the other expected RS
for the cavity shown in Fig. 9, associating the direction of thepeaks(in particular the ones expectedlat2s=4.76 cn) are
width of the cavity withz, the direction of the length of the either too small to be seen on the scale of Fig. 11, or they are
cavity with y, and the direction of the height of the cavity hidden in larger peaks or in steeply rising wings.
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E, =i 9 o XV, H,(r), (5.
101 (a) 1 B>—k?
|7
: H = —i—P 5. H,r). (5.2
05 E - ookt et

. It follows that all field components can be obtained from
. 1 H,(r) alone. Note that for TE polarizatiok,=0, so the
T electric field vector remains in they plane.
0.0 0 (om) 20 30 For E andH to fulfill Maxwell’'s equations,H, must sat-

isfy the two-dimensional Helmholtz equation everywhere in-
r . r . side the cavity

T (b) ] 2
2 [ VLHZ(Xiy)+K2HZ(X1y):01 (53)
K
) . with the boundary conditions
0.5 h
i . n-V,H,=0. (5.4
/\ The symbols used above have the usual meaning: the sub-
0.0 \ script L denotes the transverse part of a vector or an opera-
o 10 I (cm) 20 30 tor, V is the gradient operatog, is the unit vector in the

direction, n is the unit vector perpendicular to the cavity
boundary,k=w/c is the wave number; is the velocity of
light, andw is the permeability of vacuum. The parameter
in the Helmholtz equatiof5.3) is the transverse wave num-
ber, which is related to the propagation constdnand the
wave numbek by

FIG. 11. Same as Fig. 10, but on a vertically and horizontally
expanded scale in the ranges0<30 cm.

A rectangular cavity loaded with a metallic bar is particu-
larly well suited for numerical calculations of its eigenmodes k?= B2+ k2. (5.5
and eigenfrequencies. Figure 9 shows three important prop-
erties of our cavity:(i) The cross section of the cavity or- At the wallsz=0 andz=b of the cavity the transverse com-
thogonal to thez direction does not depend on the position, ponent of the electric field must vanish. In order to match
(i) the height of the cavity is much smaller than its other twothese conditions the allowed values of the paramgtere
dimensions, andiii) the cavity interior consists of three re- B,=n(2=w/c),n=1,2,....
gions of simple rectangular shape. Each of these properties This establishes the longitudinal dependence of the field.
plays an important role in our analysis. The constancy of thdt is of the form sinf3,;2) for E,, E,, andH, and of the form
cross section along the direction allows one to treat the €0s({3:2) for H, andH, . The occurrence of sine and cosine
cavity as a section of an infinite waveguide, closed on botform factors is related to the different symmetry properties of
its ends by conducting walls. Because our cavity is thin, "€ various field components under the transformation
large number of TE resonances occur for frequencies beloW— — 8- But what about the transverse characteristics? To
the lowest-order resonance of the TM type. In this way weNSWer this question we have to solve Exj3) together with
avoid the vector nature of the electromagnetic field. Finally,Ed- (5-4. This yields the allowed valuesy, for the trans-
the rectangular shape of all three cavity subregions simplifie¥€rSe wave numbek and, of course, the transverse field
the calculations. H,(x,y). The (dispersion relation

The starting point of the analysis is to utilize the
waveguidelike shape of the cavity. This property causes the
existence of the basic TE and TM field polarizations as well Wmn=CVK,t By (5.6
as guaranteeing that any solution can be expanded into
propagating modes of the typ&g(r) =X(x,y)exp(B2). Here  gives the resonant frequencies. The central question now is
X denotes any of the electromagnetic field vectors gnid ~ how to find thex,’'s. We begin by making use of the simple
the (rea) propagation constant of the mod@Ve take all shape of the cavity. Because the cross section can be split
metal to have infinite conductivity.The time dependence into three rectangular sectiond) 0<x<H, 0<y<d; (Il)
exp(—iwt) is implied. For the TE modes the following rela- h<x<H, d<y<d+s; and (lll) 0<x<H, d+s<y<a,
tionships hold: H,(x,y) can be expanded in a Fourier series of the form
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[ o
2, AnCOS 70Y)COS 7o) (1)
H,(X,y)={ go {Chcog £n(y—a)]+Dysin £n(y—a)]} cog s,(x—h)] (1) (5.7)
EO Bncog 7n(a—y)]1cog yX) ().
\ "~

The new Symbo|s ara_:d+s/2 (the position of the center rier transforms of the level density for<d<50 cm. The
of the bay, y,=nm/H, s,=mm/(H—h), 7,= [2— 2 >3 shape of the peaks and the shoulders in the Fourier transform

.- ts that for the bar in positidh; the non-Newtonian

and §n=\/K2—52n. The coefficientsA,,B,,,C,,D, are the sugges 1
Fourier amplitudes to be determined. It is possible to provéqS ort_n_ts have the lengl~10 and 14.8 cm and for_ the bar
that Eq. (5.7) solves the Helmholtz equatios.3) and in positionM, 1=17 and 21.8 cm, respectively. This agrees
matches the required boundary conditi4) at all cavity with our expectations. The internal bounce periodic orbit
walls. What remains is to ensure the continuity of the fieldpeak expected nezir:4._7_6 cm n theM transfc_er is ob-
that crosses the subregions boundarieg-atl andy=d+s  Scured by the steeply rising wing &5 cm, but it is barely
and to match the boundary conditiot&4) at both faces of visible as a small peak in thil, transform. The length of
the metallic bar. the M, analog of theM; periodic orbit that occurs at

The remaining steps are straightforward. One chooseg:24'76~cm |sI=_38.7_6 cm. It is responsible for the dotted
large enough numbei,,,x and M, of the Fourier com- peak aﬂ_~40 cm in Fig. 12. . .
ponents in the corresponding subregions 1 and Iil, and I, We did another set of calculations for a rectangular cavity

respectively, and sufficiently large numbers of mesh points aff the following dimensionsb=80 cm, a=92 cm, and
the boundariey=d andy=d+s. Then, by imposing the H=1.2 cm. The metallic bar had a 4.2 mm height and a 10

continuity and boundary conditions at each mesh point on&M Width. It was placed in positioM,. We calculated 3959
obtains a set of linear equations for the amplitudeg€Sonances from 0 to 12.5 GHz. Presented in Fig. 13, the
A,.B,,C,.D,. A correct choice of numbers makes the Fourier transform of the calculated level dens_|§y shows peaks
number of equations equal the number of unknown ampli{Shoulders very close to the expected positions for non-
tudes. Therefore, a nontrivial solution exists if the determi-Néwtonian RS orbits, which are predicted to occut=ato,

nant of the corresponding matrix of coefficients is zero. ~ 20; 30, and 40 cm, respectively.

Since the matrix elements still depend on the parameter
the equation VI. SEMICLASSICAL ANALYSIS

Locations, widths, and heights of the non-Newtonian
peaks shown in Fig. 8 can be estimated semiclassically. In

is the desired equation for the,’s and thus determines the order tc_) lllustrate the procedL_Jre, we focus on the non-
Newtonian external bounce orbit, which, for cd3g occurs

resonance frequencies of the cavity. The last two steps, i.€.

the computation of the determinant and the calculation of th&t!~14 cm. On the basis of the theoretical framework pro-
zeros of Eq(5.8), were done numerically. vided in Refs[2,4], we obtain its contribution to the oscil-

We used the theoretical method described above to mak@ting part of the scaled density of resonances as
calculations for several rectangular cavities with the metallic

DetM(x)=0 (5.8

bar placed in the positionsl; and M,. First we compared 15.0 [ " T ' '
calculated eigenfrequencies with measured ones and found 2 1

good agreement. Over the range 2—6 GHz discrepancies 7]

were on the order of several megahertz, which we attribute to 100 | o ]

small imperfections of the shape of the experimental cavity.
The Fourier transforms of the theoretically calculated level
density for the experimental cavity with the metallic bar in
positionsM; and M, are shown in Figs. 10) and 11b); 50 |
they show excellent agreement with the respective Fourier :
transforms of the experimental resonance data.
In order to get a closer look at the non-Newtonian RS Y A N
orbits we calculated the first 972 resonandé®quency 0.0 Sttanma® 1 oS
range 0—12.5 GHzof a larger rectangular cavity with the 0.0 20.0 I (cm) 40.0
following dimensionsb=40 cm,a=46 cm, andH=1.2 cm.
The metallic bar insert had the same rectangular cross sec- FIG. 12. Theoretical computation of the Fourier transform of the
tion as was used in the experiment and it was placed ifevel density of the rectangular metal-loaded<4b cn? cavity in
positionsM ; andM,, respectively. Figure 12 shows the Fou- the range 8I<50 cm. Solid line, cas#,, dotted line, casé,.
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60.0 y T y J form, the level densit)Z)'s(E) exhibits only about three os-
cillations. We expect that the full information on the non-

IF* L T Newtonian orbit is not yet contained in such a small number
of oscillations. Consequently, the heights of the peaks in Fig.

40.0 1 8 are not yet converged in the number of resonances. We

confirmed this by computingF(1)|? with inclusion of 40,
45, and 50 resonances in the transfdfr).

200 .
VII. DISCUSSION
There are several points about our experiment and its the-
- - oretical interpretation that need to be discussed. Let us start
0.0 0 20 40 with the number of states used in our experiments with the

L (em) dielectric bar. The present evaluation of our data is based on

only the first 50 states. This does not mean that we were
unable to measure more resonances, but it does mean that
aboveN'~50 we could not guarantee that we would not miss
any levels. With the help of theoretical calculations we found
that missing a level has disastrous consequences for loca-
- . tions, heights, and even the very appearance of the non-
ps(E)=(Rr/2mk)sin(2kR), (6.)  Newtonian peaks in the Fourier transform. This explains
why, from the experimental point of view, we had to restrict
ourselves to a “safe” range of resonances, here 50.
1— \/; With 50 states we are able to resolve the non-Newtonian
= (6.2 peaks in the experiments with the dielectric bar, but we are
1+ e unable to resolve the cluster of Newtonian peaks in Fig. 7.
. . - ) _ The smallest distance between peaks in this clustatisl
is the_ reflection coefficient anﬂ_= 7.17 cm is the rad|us_ of cm. To resolve the associated peaks one should aim at a
the circular end cap of the cavifgee Fig. 6 The Fourier oo 1ution off<0.2 cm, wherd” is the width of the associ-
transform(3.1) of p(E) can be performed analytically for ated Newtonian peaks. Assuming that the shape of these
o=1. Neglecting an additive nonresonant term, we obtain peaks is essentially given by E66.3), we use Eq(6.5) to
o0 estimate the minimum necessary wave nunbgy, for the
|]:(|)|2:R r2 S|n2[(2R—I)K2/2], (6.3 required resolution. We obtai ,;;=5.57/0.2 cm ~28
47 [(2R-1)/2] cm~ L. According to the leading term of the mean staircase

FIG. 13. Theoretical computation of the Fourier transform of a
large rectangular metal-loaded cavity. Size of the cavityx 82
cm?; width of the metal bar, 10 cm; position of the bt (d=5
cm).

where

r

function M(E) derived in Sec. IlI, this means that the Fourier
transform should be based on at leaét aK?Z,,~18 000
R2?r2 states. This is obviously way beyond the reach of our present
|f(|)|2—>ﬁK5(2R—|)- (6.4  experiment and it is also beyond the number of resonances
(~10?) being investigated in recent experiments with empty,
This result shows that in the limit of largé isolated non- ~ Superconducting cavities; see, e.g., REZ5]. Therefore,
Newtonian orbits indeed contribute &function singularity ~ 9iven the present state of the experimental art, we did not
to (1), as was conjectured in Sec. Il on the basis of Eq&Ven attempt a microwave cavity experiment that would be
(2.19. In addition, Eq.(6.4) confirms that the location of the able to fully resolve thousands of resonances. However, our
external bounce orbit is indeed expected aPR~14 cm. present results establish the need for improving th_e experi-
For finiteK we obtain peaks broadenedlimith full width at ~ Mental state of the art so that converged locations and

whereK = JEsy~1.54 cm L. For largeK Eq. (6.3 becomes

half maximum(FWHM) of heights of RS peaks can be compared with theory. _
In this connection we may point out that the discussion
I'~5.57K. (6.5  presented in Sec. VI presents a direct comparison of semi-

classically computed peak heights, widths, and locations cor-
In the present casE~3.6 cm, which agrees well with the responding to non-Newtonian RS orbits with peaks resulting
widths of the peaks dt~14 and 19 cm in Fig. 8. We define either from a numerical solution of the ScHinger equation
the strength of a peak to ke= [|F(1)|2dl. According to Eq.  or from direct experimental measurements. Another impor-
(6.4), we expectr=0.41 cm. Estimating the strength of the tant point presented is the extraction of information on non-
peak atl =14 cm in Fig. 8 as its height times its FWHM, we Newtonian orbits from our computations of the resonances
obtaino=0.43 cm. The experimental result and the theoret-of the metal-loaded cavity reported in Sec. V. In our compu-
ical estimate for the strength are close. Though encouragingations we take the vector nature of the electromagnetic field
this agreement is fortuitous for the following reasoimsThe  explicitly into account. This is important since a metallic
Fourier transform of the experimental resonances contains step, which does not fill the full height of a two-dimensional
window function. If it is taken into account, it reduces the cavity, generates a fringe field that is inhomogeneous over
theoretical estimate of the strength by a factaofiid.Over the  the height of the cavity. Thus the magnitude of the electric
whole range of the 50 resonances used in the Fourier tranield in the vicinity of a metallic step depends nontrivially on
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all three spatial dimensions. Qualitatively, the same considbehavior establishes a profound difference between our non-
erations apply if an inserted dielectric bar does not fill theNewtonian orbits and the ghost orbits discussed in the litera-
entire height of the cavity. Thus the one-to-one corresponture. Moreover, our non-Newtonian orbits are not the result
dence with the Schobnger equation can be broken locally of complex solutions in a complexified phase space. Rather
near the step. Therefore, in metal-loaded cavities a reasothey occur as a result of a boundary condition imposed at the
ably sharp RS boundarand thus nearly global equivalence ray-splitting surface. However, we should point out that in-
with a Schralinger equatiopoccurs only if the wavelength clusion of the ghost contributions in ER.15 would cer-
is much larger than the spatial extent of the inhomogeneityainly improve the agreement between the semiclassical
of the electromagnetic field in the step region. Metal-bartheory of RS systems and the complete quantum-mechanical
loaded cavities are very similar to “two-height” cavities theory. As a matter of fact, since non-Newtonian periodic
whose investigation in the context of ray splitting was sug-orbits undergo much the same type of bifurcations as New-
gested earlier in Ref2]. tonian periodic orbits, we expect contributions to E2}15
As part of a more general discussion of our experimentfrom Newtonian as well as non-Newtonian ghosts. Identify-
let us emphasize what is different about non-Newtonian R$ng and evaluating these non-Newtonian ghost contributions
orbits in the Fourier domain as opposed to resonances in thguantitatively must be left for future work.
frequency domain. The central point of our work is not the
emergence of individual, different frequency resonances con-
nected with waves bouncing inside and outside the dielectric, Viil. SUMMARY AND CONCLUSIONS
resonances whose frequencies can be computed from the op-The main thrust of our paper is to present experimental
tical path length of the non-Newtonian orbits identified in anq theoretical evidence for the existence of non-Newtonian
our experiments. If this were the central point of our paperorpits produced by ray splitting in dielectric- and metal-
nothing would be different about our experiment since resojpaded cavities that are of relevance to the context of quan-
nances of this nature are routinely used(fabry-Peot or  ym chaos. All our experimental results are corroborated and
othep interferometers in many laboratories around the world.sypported by detailed numerical calculations and interpreted
But this is not so. The non-Newtonian orbits we find experi-yithin the framework of the extended Gutzwiller formula
mentally are associated with peaks that appear ifftheier (2 15, For the location and height of a particular type of
transformof the total set of all cavity resonancesily when  non-Newtonian orbit we obtained qualitative agreement with
the dielectric bar or metal step is put into the cavity. Oncempne results of semiclassical calculations.
this difference is appreciated, the peaks in the Fourier trans- Based on the discussion presented in Sec. VII, we con-
form are both different and surprising. clude that our experiments and accompanying theory estab-
In this paper it is not our intention to dwell on the deeperjish beyond any reasonable doubt the existence, widths, and

nature of the non-Newtonian orbits identified in our eXpe”'I?cations of peaks in the Fourier transformfE) that can

ments. Rath_er, our_present.goal IS to prove the_emstence Pe associated with non-Newtonian periodic orbits. Since ray
non-Newtonian orbits by using their characteristics as far ag

. . . litting occurs in all wave systems with sharp, partially
they are established in the literature. We are not aware of "’.Ir#;nsparent interfaces we expect the signatures of non-
published papers that predict more about the non-Newtonian . o~ )
orbits than we established experimentally. We hope, howNewtonian RS orbits i (E) as a universal feature of all RS
ever, that our paper will inspire further theoretical work on Wave systems.

the nature of the non-Newtonian orbits now that we have
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